GEE for longitudinal ordinal data: Comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN
نویسندگان
چکیده
منابع مشابه
R Package multgee: A Generalized Estimating Equations Solver for Multinomial Responses
This introduction to the R package multgee is a slightly modified version of ?, published in the Journal of Statistical Software. To cite multgee in publications, please use ?. To cite the GEE methodology implemeted in multgee, please use ?. The R package multgee implements the local odds ratios generalized estimating equations (GEE) approach proposed by ?, a GEE approach for correlated multino...
متن کاملrepolr: An R Package for Fitting Proportional-odds Models to Repeated Ordinal Scores
Modelling repeated ordinal score data is a common statistical problem, across many application areas. The proportional-odds model is widely applied to such repeated ordinal scores and can be fitted in the repolr package (repeated measures proportional odds logistic regression) in R using the method of generalized estimating equations (GEE). The GEE approach specifies a model for the mean of the...
متن کاملAnalyzing Ordinal Repeated Measures Data Using SAS®
This paper provides a brief review of commonly used statistical methods for analyses of ordinal response data. Generalized CMH Score Tests of Marginal Homogeneity, GEE, and random-intercepts logistic regression ordinal model for analysis of repeated ordinal response data will be particularly discussed. SAS procedures, Proc NLMIXED, Proc GENMOD, Proc IML, and Proc FREQ for categorical ordinal an...
متن کامل%QLS SAS® Macro: A SAS Macro for Analysis of Longitudinal Data Using Quasi- Least Squares
Quasi-least squares (QLS) is an alternative computational approach for estimation of the correlation parameter in the framework of generalized estimating equations (GEE). QLS allows for easier implementation of some correlation structures that are not available for GEE. We describe a user-written SAS® macro called %QLS, and demonstrate application of our macro using a clinical trial example for...
متن کاملGenerating correlated discrete ordinal data using R and SAS IML
Correlated ordinal data are common in many areas of research. The data may arise from longitudinal studies in biology, medical, or clinical fields. The prominent characteristic of these data is that the within-subject observations are correlated, whilst between-subject observations are independent. Many methods have been proposed to analyze correlated ordinal data. One way to evaluate the perfo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 77 شماره
صفحات -
تاریخ انتشار 2014